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Abstract
The electron transport through a triple-arm Aharonov–Bohm (TAAB)
interferometer with an electron–electron interaction quantum dot embedded in
each arm is studied using the Green’s function technique by means of self-
consistent calculation. Transport through one arm of the TAAB interferometer
provides the ‘background channel’. Linear conductance shows a symmetric
structure including the effect of the Coulomb blockade, even in the out-of-
equilibrium state, by applying a finite voltage across the device. Four Fano
resonant peaks appear with an opposite Fano factor in the conductance, which
is different from that of the double-quantum-dot AB interferometer. Not only
the magnitude but also the sign of the Fano factor can be controlled more easily
when the energy levels of the quantum dots in the reference arm are modified
by adjusting the gate or the bias voltage in experiments. As a function of the
magnetic field, the AB oscillation is also affected considerably.

1. Introduction

Transport through quantum dots (QDs) has been studied extensively and has revealed
interesting phenomena such as resonant tunneling, Coulomb blockade, and the Kondo
effect [1–3]. On the other hand, quantum coherence is detected through an Aharonov–Bohm
(AB) interferometer. Tunneling through an AB interferometer, an electron moving from the
left-hand reservoir to the right-hand reservoir, is split into two partial waves which interfere
with each other. In order to measure the interplay of the resonant transport, in particular
the electron–electron interaction and quantum coherence, an AB ring with one quantum dot
embedded in its arm has been the subject of active research during the past ten years [4–6].

When the discrete energy level in the quantum dot is embedded in a continuum energy
state of the electrode, an asymmetric line shape in the linear conductance arises around the
discrete quantum dot level as a function of the gate or bias voltage, which is called the well-
known Fano effect [7]. Scanning tunneling microscopy measurements of magnetic atoms
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Figure 1. The model of the triple-arm Aharonov–Bohm interferometer. A quantum dot with
electron–electron interaction embedded in each arm.

on gold surfaces yielded Fano line shapes in the tunneling density of states, which have
been successfully explained theoretically under the assumption that only conduction electrons
participate in tunneling [8–10].

Beside containing one quantum dot, an AB interferometer containing a double quantum
dot (DQD) has been investigated, and some new interference effects have been found [11–17].
de Guevara et al [11] have investigated transport through a DQD with interdot coupling and
found that a progressive reduction of tunneling through the antibonding state takes place when
the DQD system undergoes a transition from serial to parallel alignment. Lu et al [15] also
studied the DQD system and found that, by adjusting the magnetic flux, the function of two
quantum states can be exchanged, giving rise to the so-called swap effect.

We have investigated a serial-coupled double-ring AB interferometer [18] and found that
the zero-bias conductance varies non-monotonically due to coupling between the two rings,
which is different from the case of a single-ring AB interferometer. Very recently, de Guevara
and Orellana [19] proposed a parallel-coupled triple quantum dot molecule; Fano resonances
and bound states in continuum (BIC) were investigated. In experiment, the Kondo line shape
can be measured as a function of the interatomic distance between Co adatoms in trimer
configurations on a Cu single-crystal surface using scanning tunneling spectroscopy (STS)
spectra [20]. Motivated by these theoretical predictions and experimental phenomena, in this
paper we investigate a three-arm Aharonov–Bohm (TAAB) interferometer with a Coulomb-
blockaded quantum dot embedded in each arm (see figure 1), and electron–electron interaction
is considered. Using the Green’s function method, the linear conductance is calculated
numerically. With transport through one or two arms as a background channel, the linear
conductance shows a typical Fano resonance, and the Fano factor changes when the energy
levels of the reference quantum dots are modulated by the gate or bias voltage. By applying a
finite bias across the device, the state of the quantum dots can be driven out of equilibrium, but
by adjusting the quantum dot energies in this TAAB device using an appropriate method, the
shape of the conductance stays in symmetry.

This paper is organized as follows. In section 2 we discuss the Hamiltonian of a general
TAAB device and derive the formula for linear conductance. We then analyze, in section 3, the
quantum-transport properties of the structure in our model. Finally, section 4 summarizes the
results of our work.

2. Model and formulas

The TAAB interferometer that we examine in the present work is shown in figure 1. It consists
of an AB ring with three arms, and a quantum dot with electron–electron interaction embedded
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in each arm; the AB ring is connected by two electrodes to the outside world. The Hamiltonian
of the system can be written as

H = HL + HR + HD + HT, (1)

where HL and HR are the Hamiltonians for the left-hand (v = L) and the right-hand (v = R)
leads:

Hv =
∑

k,σ

εkvσ a+
kvσ akvσ . (2)

Here akvσ (a+
kvσ ) denotes the annihilation (creation) operator for electrons in the lead v with

energy εkvσ . HD describes the dynamics of the three quantum dots:

HD =
∑

σ,i=1–3

εi d
+
iσ diσ +

∑

i=1–3

Ui ni↑ni↓, (3)

where d+
iσ (diσ ) represents the creation (annihilation) operator of the electron with energy εi ,

Ui is the intradot electron–electron interaction, and niσ = d+
iσ diσ is the occupation per spin σ

for the dot i . Finally, HT is the tunneling between the dots and the two electrodes:

HT =
∑

k,v,i,σ

(Tk,v,i a
+
kvσ diσ + H.c.), (4)

where Tkvi are the tunneling matrix elements. The retarded Green’s function GR(ε) is a 3 × 3
matrix,

GR(ε) =
⎛

⎝
GR

11(ε) GR
12(ε) GR

13(ε)

GR
21(ε) GR

22(ε) GR
23(ε)

GR
31(ε) GR

32(ε) GR
33(ε)

⎞

⎠ , (5)

with the definition

GR
i j ≡ 〈〈diσ |d+

jσ 〉〉ε ≡ −i
∫

eiωt 〈{diσ (t), d+
jσ (0)}〉 dt . (6)

Here, {, } and 〈〉 denote the anti-commutator and statistical average of operators, respectively.
〈〈diσ | d+

jσ 〉〉ε can be resolved by equation of motion:

(ε − εi )〈〈diσ |d+
jσ 〉〉ε = δi j +

∑

kv

Tkvi 〈〈akvσ |d+
jσ 〉〉ε + Ui〈〈diσ n−σ |d+

jσ 〉〉ε . (7)

Applying the equation of motion to the Green’s functions on the right-hand side of equation (7),
we can find

(ε − εkvσ )〈〈akvσ |d+
jσ 〉〉ε =

∑

ki

Tkvi 〈〈diσ |d+
jσ 〉〉ε , (8)

(ε − εi − Ui )〈〈diσ ni−σ |d+
jσ 〉〉ε = 〈 ni−σ 〉δi j +

∑

kv

[Tkvi 〈〈akvσ ni−σ | d+
jσ 〉〉ε

− Tkv−σ 〈〈diσ a+
kv−σ di−σ |d+

jσ 〉〉ε + Tkv−σ 〈〈diσ d+
i−σ akv−σ |d+

jσ 〉〉ε ]. (9)

Now, the Hartree–Fock decoupling scheme is applied to the higher-order Green’s functions
generated on the right-hand side of equation (9),

〈〈akv±σ ni−σ |d+
jσ 〉〉ε → 〈ni−σ 〉〈〈akv±σ |d+

jσ 〉〉ε , (10)

〈〈diσ akv±σ d+
i−σ |d+

jσ 〉〉 → 〈d+
i−σ diσ 〉〈〈akv±σ |d+

jσ 〉〉, (11)

〈〈diσ a+
kv±σ di−σ |d+

jσ 〉〉 � 0, (12)

which closes the set of equations (7)–(9) and allows us to find a solution for the Green’s
functions GR

i j(ε).
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The general solution for the Green’s function may be written in the compact form of the
matrix Dyson equation,

GR(ε) = [1 − gR(ε)ΣR(ε)]−1gR(ε), (13)

where gR(ε) is the corresponding Green’s function of the dot decoupled from the electrodes,
but with the Coulomb interaction,

gR
i j(ε) = ε − εi − Ui(1 − 〈ni−σ 〉)

(ε − εi)(ε − εi − Ui )
δi j . (14)

The self-energy ΣR(ε) includes two terms,

ΣR(ε) = ΣR
l (ε) + ΣR

r (ε), (15)

and �R
v (ε) = −i�v/2, where �v is the tunneling coupling matrix.

We neglect the energy dependence of the tunnel matrix elements and assume a symmetric
coupling strength: TkL1 = |t|eiφ1/4, TkL2 = |t|eiφ2/4, TkL3σ = |t|eiφ3/4, TkR1 = |t|e−iφ1/4,
TkR2 = |t|e−iφ2/4, TkR3 = |t|e−iφ3/4. For the phase shift due to the total magnetic flux threading
into the TAAB interferometer, we choose a symmetric gage such that φ1 = 2π(�1 + �2)/�0,
φ2 = 2π(�1 −�2)/�0, and φ3 = −2π(�1 +�2)/�0, where �1, �2 are the applied magnetic
field (see figure 1) and the flux quantum �0 = hc/e. In our calculation, we define the linewidth
matrix as �v

i j = ∑
k Tkvi T ∗

kv j 2πδ(ε − εkvσ ). Thus, in the 3 × 3 generalized Nambu space, the
tunneling coupling matrix is described by

�L =

⎛

⎜⎜⎜⎝

�L
1

√
�L

1 �L
2 ei(φ1−φ2)

√
�L

1 �L
3 ei(φ1−φ3)

√
�L

1 �L
2 e−i(φ1−φ2) �L

2

√
�L

2 �L
3 ei(φ2−φ3)

√
�L

1 �L
3 e−i(φ1−φ3)

√
�L

2 �L
3 e−i(φ2−φ3) �L

3

⎞

⎟⎟⎟⎠ , (16)

and

�R =

⎛
⎜⎜⎜⎝

�R
1

√
�R

1 �R
2 e−i(φ1−φ2)

√
�R

1 �R
3 e−i(φ1−φ3)

√
�R

1 �R
2 ei(φ1−φ2) �R

2

√
�R

2 �R
3 e−i(φ2−φ3)

√
�R

1 �R
3 ei(φ1−φ3)

√
�R

2 �R
3 ei(φ2−φ3) �R

3

⎞
⎟⎟⎟⎠ . (17)

Here, �v
i is short for �v

ii .
The correlation Green’s function G<(ε) can be calculated from the Keldysh equation [21],

G<(ε) = GR(ε)Σ<(ε)GA(ε), (18)

where the lesser self-energy Σ<(ε) is related to the retarded and the advanced self-energies,

Σ<(ε) = −
∑

ν

[ΣR
ν (ε) − ΣA

ν (ε)] fν(ε), (19)

where fν(ε) is the Fermi–Dirac distribution function for the νth electrode, fν(ε) = 1/{1 +
exp[(ε − μν)/kBT ]}, with the electrochemical potentials μl = eVl = eV/2 and μr = eVr =
−eV/2, respectively.

The average values of the occupation numbers 〈niσ 〉 = 〈d+
iσ diσ 〉, which enter the

expressions for the Green’s functions, has to be calculated self-consistently using the formulas

〈niσ 〉 = Im
∫ +∞

−∞
dε

2π
G<

ii (ε). (20)

The differential conductance G = dI/dV is related to the effective transmission, and now
can be calculated as [21, 22]

G = 2e2

h

∫
dε

(
−∂ f

∂ε

)
Tr

{
�R(ε)�L(ε)

�R(ε) + �L(ε)
[GR(ε) − G A(ε)]

}
. (21)
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Figure 2. The linear conductance as a function of �ε with and without electron–electron
interaction: (a) U = 8 and (b) U = 0. The thin solid, dashed, dotted, and thick solid lines
correspond to ε2 = 0.0, 0.5, 1.0, and 2.0, respectively.

3. Results and discussion

In the present paper, a symmetric structure �L
i = �R

i = � is considered; � is taken as the
energy unit. The magnetic field is assumed to be �1 = �2, i.e., φ1 = −φ3 and φ2 = 0. In
the following calculation, we define the magnetic field φ1 = −φ3 = φ/4 and electron–electron
interaction U = 8�, respectively.

First of all, we fix the energy level of quantum dot 2 (QD2), i.e. ε2, and vary the
other energy levels ε1(= ε2 − �ε) and ε3(= ε2 + �ε); the magnetic field and the bias are
not considered. The linear conductance as a function of �ε is calculated and the result is
shown in figure 2(a). For comparison, the case of non-electron–electron interaction is also
indicated in figure 2(b). From figure 2 we find that, with and without electron–electron
interaction, when the quantum dot energy level ε2 = 0.0, the electrons can tunnel through
the device much more easily, and the conductance maintains a high value. When there is
no electron–electron interaction, i.e. U = 0, we can see in figure 2(b) that the conductance
shows a typical Fano resonant shape due to interference of the electrons passing through
the different arms of the AB interferometer, which is in agreement with previous theoretical
and experimental studies. Transport through QD2 provides the ‘background channel’ with
transmission Tb = �2/[ε2

2 + �2]; two symmetric Fano resonances appear at �ε = ±ε2 with
an opposite Fano factor.

When the electron–electron interaction is considered, the quantum dot energy level will
be renormalized. We can see from figure 2(a) that four Fano resonances arise at �ε =
±ε2, ± (ε2 +U). Due to the Coulomb blockade, the electrons can flow only when electrons in
the electrodes have sufficient energy to occupy the lowest possible energy states. By changing
the energies of the quantum dots, the energy level of the dot states is shifted through the Fermi
energy of the electrodes. This leads to a series of peaks in the conductance. Between the two
peaks at �ε = ε2 and ε2 + U (and also at �ε = −ε2 and −ε2 − U ), the conductance is
suppressed because the electrons in the electrodes have insufficient energy to overcome the
Coulomb repulsion; the Coulomb blockade effect appears. We can also see that, when ε2 is
zero, the peak of the conductance is symmetrical; the Fano factor is zero. When the energy
level ε2 increases, the asymmetric parameter of the conductance peaks becomes stronger, and
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Figure 3. The linear conductance as a function of �ε with electron–electron interaction U = 8,
φ = 0, and bias eV = 0.8. The solid, dashed, and dotted lines correspond to ε2 = 0.5, 1.0, and 2.0,
respectively.

the Fano factor increases. It is interesting to note that in this three-arm model, if we fix one
quantum dot energy, there are another two quantum dots in which energies can be modulated;
as a result, the Fano factor varies symmetrically. It can be seen in figure 2(a) that at �ε = ε2,
ε2 + U the Fano factor is positive, but at �ε = −ε2, −(ε2 + U), the Fano factor becomes
negative, but with the same absolute value.

When a finite bias is applied across the TAAB interferometer, the conductance is as
indicated in figure 3. The electric field drives the system out of equilibrium, enriching the
interplay between quantum coherence and the electron–electron interaction. In addition to the
main peaks related to the quantum dot energies, new satellite resonant peaks appear at the
energy side. Because the electric field applied across the device is small, eV = 0.1U , when the
energy of quantum dot 2 (ε2) becomes large (see the dotted line in figure 3), the effect of the
bias voltage on the transport becomes weak. It is natural to expect that the transport symmetry
present at the equilibrium state may be broken due to the applied electric field. But, for the
present model, we vary the energy levels of quantum dot 1 and quantum dot 3 synchronously;
the symmetry of the conductance is not broken even in this non-equilibrium system.

For the same time, we calculate the conductance as a function of the energy level of
quantum dot 2, ε2, and fix energy levels ε1 and ε3; the result is plotted in figure 4. Transport
through quantum dot 1 and quantum dot 3 acts as the ‘background channel’:

Tb = �[(ε1 + ε3)
2 cos2 φ

2 + �ε2 sin2 φ

2 ]
[( ε1+ε3

2 )2 − ( δε
2 )2 − �2 sin2 φ

2 ]2 + (ε1 + ε3)2�
. (22)

In this case, the energy level ε1 = −ε3 is defined; thus, in figure 4(a) we can find that the
positions of the Fano resonant peaks are fixed at ε2 = 0, U , and do not shift when the energy
levels of quantum dot 1 and quantum dot 3 are modified. This condition will be changed
when a finite bias is applied across the device; one can see in figure 4(b) that the peaks of
the conductance shift accordingly. We can simulate the shape of the conductance using the
generalized Fano form, T ∼ (ε+q)2

ε2+1 , at the Fermi level, where q is the Fano factor. When
the energy difference between quantum dot 1 and quantum dot 3 becomes larger, the Fano
resonance of the conductance is sharper, and the Fano factor becomes bigger. Thus, the Fano
factor can be strongly affected by adjusting the energies of the reference dots using the gate
voltage.

6
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Figure 4. The linear conductance as a function of ε2 with different values of the energy levels of
QD1 and QD3, U = 8 and φ = 0, respectively: (a) eV = 0.0 and (b) eV = 0.8.

Figure 5. Density of states as a function of the energy for three quantum dots, U = 8, φ = 0, and
eV = 0. Solid, dashed, and dotted lines correspond to QD1, QD2, and QD3, respectively. Inset:
ε1 = ε2 = ε3 = 0.0.

Now we examine the density of states (DOS) of the quantum dots. Figure 5 shows the
calculated density of state of the three quantum dots for the condition ε1 = −ε3 = 2.0,
ε2 = 0.0, ϕ = 0. The inset is the case ε1 = ε3 = ε2 = 0.0. When the three dots have
the same energy levels, ε0 for example, the local density of states in each quantum dot is the
same, and the electron has the same probability of being found. The DOS inset of figure 5
shows two binding states. The first one is located at the energy ε = ε0, the energy required
to put the first electron in the QD. The second resonance appears at ε = ε0 + U , the energy
required to add an additional electron. The shape of the resonance peaks is Lorentzian, which
contributes two Breit–Wigner peaks to the conductance. When the energy levels for the dots are
different, quantum interference effects arise. The Lorenztian at the bonding energy produces
a Breit–Wigner shape to the conductance, while that at the anti-bonding energy becomes a δ

function, giving a Fano effect. Because the three quantum dots connect with the same source
and drain electrodes and have interactions with each other, we can find in figure 5 that the DOS

7
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Figure 6. AB oscillations for different values of (ε1, ε2, ε3), with U = 8 and
eV = 0.8: a(−4.0,−2.0, 0.0), b(−3.5,−2.0,−0.5), c(−3.0,−2.0,−1.0), d(0.5, 0.0, 0.5),
e(−0.5, 0.0, 0.5), f (0.0, 2.0, 4.0).

has some anti-resonances, which contributes to the Fano effect making the conductance more
complicated.

The AB oscillation is indicated in figure 6. The conductance oscillates as a function of
magnetic flux with different periods when the energy levels of the quantum dots are changed.
We first see the top panel of figure 6, in which ε2 = −2.0 and ε1 = −ε3 = ε2 ± �ε. In
these three cases, we can see that the curves a and b oscillate anomalously but with the same
frequency and phase. When the energy difference of the dots �ε becomes small (see curve
c) the transport is suppressed, the conductance oscillates slowly and the period of the curve
becomes twice that of the previous cases. When we increase the energies of the dots, the
results are indicated as d , e, and f in figure 6. The conductance clearly increases. Away from
the anomaly, the conductance of curve d is sinusoidal, with a period of 4π . Then, changing
the energy of quantum dot 1, i.e. curve e, higher harmonic contributions become important,
which corresponds to paths through the AB geometry with higher number around the enclosed
magnetic flux. The original resonant peaks at φ = 0, 4π , 8π , . . . develop into double peaks. As
we continue to increase the energies of the dots, we can see in curve f that the original resonant
peaks not only at φ = 0, 4π , 8π , . . . but also at φ = 2π , 6π , 10π , . . . split; the conductance
oscillates more quickly. Thus, in the present device, by varying the applied magnetic field and
the energy of the quantum dot, the frequency, the amplitude, and the phase of the conductance
can be controlled.

There are other interactions, such as the electron–phonon interaction etc, which are
neglected in the present work. When the electron–phonon interaction is considered, small
resonant peaks (sometimes small resonant shoulders) will appear beside the main resonant
peaks due to the absorption and emission of phonons. If the temperature is low enough, only
the emission processes contributes to the transport behavior; the absorption processes are not
available. The strength of the electron–phonon interaction and the frequency of the phonon
mode will affect the transport properties simultaneously.

We finally comment on the observability of our proposal and how one can fabricate a
TAAB device. A two-arm AB interferometer with a quantum dot embedded in each arm
has been set up in experiments [23, 24]. Based on a Ga[Al]As heterostructure with a two-
dimensional electron gas (2DEG) below the surface, by using a scanning force microscope the
2DEG is depleted below the oxide lines written on the GaAs surface, thus defining the three-arm

8
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interferometer. A QD is embedded in each arm and the direct tunneling between the dots can
be suppressed by applying a negative voltage, which forms the model in the present work.

4. Conclusion

In conclusion, we have investigated the electron transport properties through a TAAB
interferometer. The interplay of the electron–electron interaction and quantum coherence plays
an important role in the linear conductance. By varying the energy levels of the quantum dots
in the different arms, the conductance can be modified, as can the shape of the Fano resonance.
The transport properties through triple-arm AB interferometer are quite different to that of the
two-arm AB interferometer with one or two quantum dots, especially in the case of an applied
bias voltage across the device. By varying the intradot energy level using a gate voltage, the sign
of the Fano factor can change from positive to negative, and the amplitude and the frequency
of the AB oscillation in the conductance can be controlled more easily. Although we have
studied a triple-arm structure, the results that have been obtained can naturally be extended to
an AB interferometer with more arms, which gives us more choice to investigate AB devices
in experiment.
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